Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	d) Ans.	State analytical conditions of equilibrium of concurrent force system. 1) $\Sigma \mathrm{Fx}=0$ i. e. Algebric sum of all the forces along X -axis must be equal to zero. 2) $\Sigma \mathrm{Fy}=0$ i. e. Algebric sum of all the forces along Y -axis must be equal to zero.	1 1	2
	e) Ans.	Define coefficient of friction and angle of repose. Coefficient of friction: It is the ratio of limiting friction (F) to the normal reaction (R) at the surface of contact. $F \alpha R$ $\begin{aligned} & F=\mu R \\ & \mu=\frac{F}{R} \end{aligned}$	1	2
		Angle of repose: It is defined as the angle made by the inclined plane with the horizontal plane at which the body placed on an inclined plane is just on the point of moving down the plane, under the action of its own weight.	1	
	$\begin{gathered} \text { f) } \\ \text { Ans. } \end{gathered}$	Define centroid and centre of gravity. Centroid: It is defined as the point through which the entire area of a plane figure is assumed to act, for all positions of the lamina. e. g. Triangle, Square.	1	2
		Centre of Gravity: It is defined as the point through which the whole weight of the body is assumed to act, irrespective of the position of a body. e.g. Cone, Cylinder.	1	
	$\begin{gathered} \mathbf{g}) \\ \text { Ans. } \end{gathered}$	Write relation between resultant and equilibrant. Equilibrant is always equal in magnitude, opposite in direction and collinear to the resultant.	2	2

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4		OR $\begin{aligned} & \sum \mathrm{F}_{\mathrm{x}}=+300-200=+100 \mathrm{~N} \\ & \sum \mathrm{~F}_{\mathrm{y}}=+250-100=+150 \mathrm{~N} \\ & \mathrm{R}=\sqrt{\left(\sum \mathrm{F}_{\mathrm{x}}\right)^{2}+\left(\sum \mathrm{F}_{\mathrm{y}}\right)^{2}}=\sqrt{(100)^{2}+(150)^{2}} \\ & \mathrm{R}=180.278 \mathrm{~N} \end{aligned}$ As $\sum \mathrm{F}_{\mathrm{x}}=+$ ve and $\sum \mathrm{F}_{\mathrm{y}}=+\mathrm{ve}$ R lies in $1^{\text {st }}$ quadrant $\theta=\tan ^{-1}\left\|\frac{\sum \mathrm{~F}_{\mathrm{y}}}{\sum \mathrm{~F}_{\mathrm{x}}}\right\|=\tan ^{-1}\left\|\frac{150}{100}\right\|$ $\theta=56.310^{\circ}$ Taking moment of all forces @ point C $\sum \mathrm{M}_{\mathrm{C}}=-(100 \times 2)+(300 \times 3)=+700 \mathrm{Nm}$ Let x be the perpendicular distance between R and C . Using Varignon's theorem of moment $\begin{aligned} \sum_{\mathrm{C}} \mathrm{M}_{\mathrm{C}} & =\mathrm{R} \times \mathrm{X} \\ 700 & =180.278 \times \mathrm{x} \end{aligned}$ $\mathrm{x}=3.883 \mathrm{~m} \text { from point } \mathrm{C} \text {. }$ OUR CENTERS :	1	,
			1	
			1	
			1	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	b) Ans.	$\theta=\tan ^{-1}\left\|\frac{\sum \mathrm{~F}_{\mathrm{y}}}{\sum \mathrm{~F}_{\mathrm{x}}}\right\|=\tan ^{-1}\left\|\frac{100}{150}\right\|$ $\theta=33.690^{\circ}$ Taking moment of all forces@ point C $\sum \mathrm{M}_{\mathrm{C}}=-(100 \times 2)+(300 \times 3)=+700 \mathrm{Nm}$ Let x be the perpendicular distance between R and C . Using Varignon's theorem of moment $\begin{aligned} & \sum \mathrm{M}_{\mathrm{C}}=\mathrm{R} \times \mathrm{x} \\ & 700=180.278 \times \mathrm{x} \\ & \mathrm{x}=3.883 \mathrm{~m} \text { from point } \mathrm{C} . \end{aligned}$ Calculate reactions offered by surface as shown in Figure No. 2, if a cylinder weighing 1000 N is resting on inclined surfaces at 90° and 50° with horizontal. Using Lami's Theorem, $\frac{1000}{\sin 140}=\frac{\mathrm{R}_{\mathrm{A}}}{\sin 130}=\frac{\mathrm{R}_{\mathrm{B}}}{\sin 90}$ (1) (2) (3)	$1{ }^{1}$	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	d)	A block weighing 40 kN resting on a rough horizontal plane can be moved by a force of 20 kN applied at an angle 40° with horizontal. Find the coefficient of friction.		
	Ans.	$\xrightarrow{\text { Motion }}$	1	
		$\begin{aligned} & \sum \mathrm{F}_{\mathrm{y}}=0 \\ & +\mathrm{R}+\left(20 \times 10^{3} \times \sin 40\right)-\left(40 \times 10^{3}\right)=0 \\ & \mathrm{R}=27144.248 \mathrm{~N} \end{aligned}$	$111 / 2$	4
		$\begin{aligned} & \sum \mathrm{F}_{\mathrm{x}}=0 \\ & +\left(20 \times 10^{3} \times \cos 40\right)-\mu \times \mathrm{R}=0 \\ & +\left(20 \times 10^{3} \times \cos 40\right)-\mu \times 27144.248=0 \end{aligned}$	$11 / 2$	
	e)	A simply supported beam of 6 m span has subjected to loading as shown in Figure No. 4. Find support reactions by analytical method.		
	Ans.		1	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6		Attempt any TWO of the following :		12
	a)	Calculate position of centroid for T section as shown in Figure No. 7 with respect to ' A '.		
	Ans.	Line of symmetery		
		A (1) $\overbrace{-m i n}^{20}$		
		(2)		
		(1) Area calculation		
		$a_{1}=300 \times 20=6000 \mathrm{~mm}^{2}$		
		$\begin{aligned} & \mathrm{a}_{2}=10 \times 580=5800 \mathrm{~mm}^{2} \\ & \mathrm{a}=\mathrm{a}_{1}+\mathrm{a}_{2}=11800 \mathrm{~mm}^{2} \end{aligned}$	2	
		(2) x calculation		
		As given figure is symmetric @y axis, $\bar{x}=\frac{300}{2}$	1	
		$\overline{\mathrm{x}}=150 \mathrm{~mm}$ from point A horizontally rightward on line of symmetry		6
		(3) \bar{y} calculation $\mathrm{y}_{1}=\frac{20}{2}=10 \mathrm{~mm}$		
		$\mathrm{y}_{2}=20+\left(\frac{580}{2}\right)=310 \mathrm{~mm}$	1	
		$\bar{y}=\frac{\left(a_{1} \times y_{1}\right)+\left(a_{2} \times y_{2}\right)}{a}=\frac{(6000 \times 10)+(5800 \times 310)}{11800}$	1	
		$\bar{y}=157.458 \mathrm{~mm}$ from point A vertically downward on line of symmetry	1	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6		(1) From similar triangles, $\begin{aligned} & \frac{500}{200}=\frac{250}{\mathrm{D}} \\ & \mathrm{D}=\frac{250 \times 200}{500}=100 \mathrm{~mm} \\ & \text { (2) Volume calculation } \\ & \text { Let, } \mathrm{V}_{1}=\text { Volume of bigger cone } \\ & \mathrm{V}_{2}=\text { Volume of smaller cone } \\ & \mathrm{V}_{1}=\frac{1}{3} \times \pi \times 100^{2} \times 500=5235.988 \times 10^{3} \mathrm{~mm}^{3} \\ & \mathrm{~V}_{2}=\frac{1}{3} \times \pi \times 50^{2} \times 250=654.498 \times 10^{3} \mathrm{~mm}^{3} \\ & \mathrm{~V}=\mathrm{V}_{1}-\mathrm{V}_{2}=4581.49 \times 10^{3} \mathrm{~mm}^{3} \end{aligned}$ (2) \bar{x} calculation As given figure is symmetric @ y axis, $\bar{x}=\frac{200}{2}$ $\overline{\mathrm{x}}=100 \mathrm{~mm}$ from OB on line of symmetry (3) \bar{y} calculation $\begin{aligned} & y_{1}=\frac{500}{4}=125 \mathrm{~mm} \\ & y_{2}=250+\left(\frac{250}{4}\right)=312.5 \mathrm{~mm} \\ & \bar{y}=\frac{\left(V_{1} \times y_{1}\right)-\left(V_{2} \times y_{2}\right)}{V} \\ & =\frac{\left(5235.988 \times 10^{3} \times 125\right)-\left(654.498 \times 10^{3} \times 312.5\right)}{4581.49 \times 10^{3}} \\ & \bar{y}=98.214 \mathrm{~mm} \text { fromOA on line of symmetry } \end{aligned}$	1	6

